分集介绍:这一讲是上一讲的续集,首先考虑了奇函数和偶函数两种情况,讲解了傅里叶级数在这些情况下如何简化运算(以及如果将积分简化到半个周期内)。然后将2周期延伸到了任意周期...
分集介绍:这一讲主题是利用傅里叶级数求x''+0x=f(t)的特解,其中f(t)化为傅里叶级数,通过sin和cos的可解性来求特解。这一讲采用了方波的例子,告诉我们方程的输入响应系统是如何自然选出...
分集介绍:记得幂级数吧,如1/(1-x)=(x^n)、e^x=(x^n/n!),考虑某种变换,让两个幂级数的系数1和1/n!分别对应于f(x)=1/(1-x)或f(x)=e^x,这很容易。其实拉普拉斯变换与这是对应的。教授用这种深入浅出...
分集介绍:这一讲的主要目标是用拉氏变换求解线性ODE,特别的,解y''+py'+qy=f(t)形式方程。为此,教授首先引入导数的拉氏变换公式,即已知y(t)经过拉氏变换得到Y(t),那么y'及y''如何用Y(t)来表...
分集介绍:这一讲引入了卷积公式f(t)*g(t)=f(u)g(t-u)du。教授从两个方面介绍了卷积的由来和用途:理论方面,卷积和拉氏变换密切相关,L(f)L(g)=L(f*g),卷积由拉氏变换乘积关系的自然产生;实践...
分集介绍:这一讲主要是讲跳跃式不连续函数u(t)=1(t0); 0(t0)的情况,重新定义拉普拉斯逆变换的唯一性,即L(u(t))=1/s。之后教授讲到了函数平移之后的拉普拉斯变换如何进行,之后推广到更一般...
分集介绍:这是拉普拉斯变换的最后一讲,教授主要讲到了脉冲输入、狄拉克函数等内容。函数严格意义上来说并不能算函数,它是其它点处都为0,0点处为无穷大,且积分为1的广义函数,教...
分集介绍:这是一阶方程组的第一讲,首先引入了形如x'=f(x,y,t);y'=g(x,y,t)的一阶方程组。教授讲了一些实际用到一阶方程组的例子,然后利用煮鸡蛋的例子,演示了如何用比较直观的消元法来求...
分集介绍:这一讲继续前一讲的内容,讲一阶常系数线性方程组,形如x'=ax+by;y'=cx+zy,不过形式上将方程组看作是矩阵形式X'=AX,其中X为向量,A为矩阵。引入矩阵形式后,教授通过求矩阵A的特...
分集介绍:这一讲继续以矩阵形式x'=Ax讨论常系数齐次线性方程组。课堂上引入了重复实特征值和复特征值两种特殊情况,即特征方程解出重根或复根的情况,两种情况教授分别举出一个实际例...
分集介绍:这一讲教授讲到了2x2常系数齐次线性方程组各种情况的图像,以此希望给学生一个比较直观的感受,此类方程组解是什么样子。为此,教授引入了两州旅游竞争模型,分别就特征方...
分集介绍:这一讲过渡到非齐次方程组,还是以2x2常系数方程组为例,以矩阵形式x'=Ax+r进行讲解。首先,教授介绍了两个相关定理,为求解做了铺垫。然后介绍了x'=Ax的基本矩阵X。最后通过参...
分集介绍:这一讲给出了齐次微分方程组x'=Ax的解的一般公式,即用矩阵指数e^(At)表示基本矩阵X。同单个微分方程x'=ax中,a可以看作是1x1矩阵,其解是e^at。这里就是方程组在nxn矩阵上的推广,...
分集介绍:这一讲给出了齐次线性微分方程组x'=Ax的解耦解法,这是第三种方法。由于在自科和工程领域,方程组通常具有物理意义,解耦解法能偶提供对解更为本质的认识,因此教授将其作为...
分集介绍:这一讲介绍非线性的情况,主要是通过轻微阻尼的非线性摆的例子,介绍了该情况下如何求临界点,并作轨迹草图。简谐振动中,摆使用的是小角近似为线性情况,这一讲是一个推...